Antiflexible Algebras Which Are Not Power-associative

نویسنده

  • D. J. RODABAUGH
چکیده

Power-associative antiflexible algebras have been studied by the author [3] and Kosier [2]. As a matter of terminology, we shall define an algebra as a finite dimensional vector space on which a multiplication is defined in which both distributive laws are satisfied. If A is an algebra over a field F of characteristic not two, then A has an attached algebra A + which is the same additive group as A but the multiplication x-y of A+ is defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Antiflexible Algebras

In this paper we begin a classification of simple and semisimple totally antiflexible algebras (finite-dimensional) over splitting fields of char. ^2, 3.. For such an algebra A , let P be the largest associative ideal in A and let /V+ be the radical of P. We determine all simple and semisimple totally antiflexible algebras in which N ■ N =0. Defining A to be of type (m, n) if N is nilpotent of ...

متن کامل

A Generalization of Noncommutative Jordan Algebras*

and x y denotes the product x ‘3~ = my + y.2’. In Section 1 we show that a noncommutative Jordan algebra of characteristic # 2 must satisfy (1). Since power-associative algebras satisfying (1) need not be flexible [5] it follows that the class of power-associative algebras satisfying (1) is strictly larger than the class of noncommutative Jordan algebras. In Section 2 we obtain a structure theo...

متن کامل

Ultra and Involution Ideals in $BCK$-algebras

In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...

متن کامل

Massey Products and Deformations

It is common knowledge that the construction of one-parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes, and that these conditions are usually expressed in terms of Massey products, or rather Massey powers. The cohomology classes considered are those of certain differential graded Lie algebras (DGLA...

متن کامل

ON m-STABLE COMMUTATIVE POWER- ASSOCIATIVE ALGEBRAS

A commutative power-associative algebra A of characteristic >5 with an idempotent u may be written1 as the supplementary sum ^=^4„(l)+4u(l/2)+^4u(0) where 4U(X) is the set of all xx in A with the property xx« =Xxx. The subspaces Au(l) and .4K(0) are orthogonal subalgebras, [AU(1/2)]2QAU(1)+AU(0) andAu(K)Au(l/2) C4„(l/2)+^4u(l—X) forX=0, 1. The algebra A is called w-stable if 4u(X)-4„(l/2)C.4u(l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010